Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(19): 8349-8359, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38696360

RESUMO

Agricultural ponds are a significant source of greenhouse gases, contributing to the ongoing challenge of anthropogenic climate change. Nations are encouraged to account for these emissions in their national greenhouse gas inventory reports. We present a remote sensing approach using open-access satellite imagery to estimate total methane emissions from agricultural ponds that account for (1) monthly fluctuations in the surface area of individual ponds, (2) rates of historical accumulation of agricultural ponds, and (3) the temperature dependence of methane emissions. As a case study, we used this method to inform the 2024 National Greenhouse Gas Inventory reports submitted by the Australian government, in compliance with the Paris Agreement. Total annual methane emissions increased by 58% from 1990 (26 kilotons CH4 year-1) to 2022 (41 kilotons CH4 year-1). This increase is linked to the water surface of agricultural ponds growing by 51% between 1990 (115 kilo hectares; 1,150 km2) and 2022 (173 kilo hectares; 1,730 km2). In Australia, 16,000 new agricultural ponds are built annually, expanding methane-emitting water surfaces by 1,230 ha yearly (12.3 km2 year-1). On average, the methane flux of agricultural ponds in Australia is 0.238 t CH4 ha-1 year-1. These results offer policymakers insights into developing targeted mitigation strategies to curb these specific forms of anthropogenic emissions. For instance, financial incentives, such as carbon or biodiversity credits, can mobilize widespread investments toward reducing greenhouse gas emissions and enhancing the ecological and environmental values of agricultural ponds. Our data and modeling tools are available on a free cloud-based platform for other countries to adopt this approach.


Assuntos
Agricultura , Gases de Efeito Estufa , Metano , Lagoas , Metano/análise , Gases de Efeito Estufa/análise , Austrália , Monitoramento Ambiental , Mudança Climática
2.
Sci Total Environ ; 922: 171218, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38423329

RESUMO

Freshwater wetlands have a disproportionately large influence on the global carbon cycle, with the potential to serve as long-term carbon sinks. Many of the world's freshwater wetlands have been destroyed or degraded, thereby affecting carbon-sink capacity. Ecological restoration of degraded wetlands is thus becoming an increasingly sought-after natural climate solution. Yet the time required to revert a degraded wetland from a carbon source to sink remains largely unknown. Moreover, increased methane (CH4) and nitrous oxide (N2O) emissions might complicate the climate benefit that wetland restoration may represent. We conducted a global meta-analysis to evaluate the benefits of wetland restoration in terms of net ecosystem carbon and greenhouse gas balance. Most studies (76 %) investigated the benefits of wetland restoration in peatlands (bogs, fens, and peat swamps) in the northern hemisphere, whereas the effects of restoration in non-peat wetlands (freshwater marshes, non-peat swamps, and riparian wetlands) remain largely unexplored. Despite higher CH4 emissions, most restored (77 %) and all natural peatlands were net carbon sinks, whereas most degraded peatlands (69 %) were carbon sources. Conversely, CH4 emissions from non-peat wetlands were similar across degraded, restored, and natural non-peat wetlands. When considering the radiative forcings and atmospheric lifetimes of the different greenhouse gases, the average time for restored wetlands to have a net cooling effect on the climate after restoration is 525 years for peatlands and 141 years for non-peat wetlands. The radiative benefit of wetland restoration does, therefore, not meet the timeframe set by the Paris Agreement to limit global warming by 2100. The conservation and protection of natural freshwater wetlands should be prioritised over wetland restoration as those ecosystems already play a key role in climate change mitigation.

3.
Glob Chang Biol ; 28(15): 4701-4712, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35562855

RESUMO

Agricultural practices have created tens of millions of small artificial water bodies ("farm dams" or "agricultural ponds") to provide water for domestic livestock worldwide. Among freshwater ecosystems, farm dams have some of the highest greenhouse gas (GHG) emissions per m2 due to fertilizer and manure run-off boosting methane production-an extremely potent GHG. However, management strategies to mitigate the substantial emissions from millions of farm dams remain unexplored. We tested the hypothesis that installing fences to exclude livestock could reduce nutrients, improve water quality, and lower aquatic GHG emissions. We established a large-scale experiment spanning 400 km across south-eastern Australia where we compared unfenced (N = 33) and fenced farm dams (N = 31) within 17 livestock farms. Fenced farm dams recorded 32% less dissolved nitrogen, 39% less dissolved phosphorus, 22% more dissolved oxygen, and produced 56% less diffusive methane emissions than unfenced dams. We found no effect of farm dam management on diffusive carbon dioxide emissions and on the organic carbon in the soil. Dissolved oxygen was the most important variable explaining changes in carbon fluxes across dams, whereby doubling dissolved oxygen from 5 to 10 mg L-1 led to a 74% decrease in methane fluxes, a 124% decrease in carbon dioxide fluxes, and a 96% decrease in CO2 -eq (CH4 + CO2 ) fluxes. Dams with very high dissolved oxygen (>10 mg L-1 ) showed a switch from positive to negative CO2 -eq. (CO2 + CH4 ) fluxes (i.e., negative radiative balance), indicating a positive contribution to reduce atmospheric warming. Our results demonstrate that simple management actions can dramatically improve water quality and decrease methane emissions while contributing to more productive and sustainable farming.


Assuntos
Gases de Efeito Estufa , Metano , Animais , Dióxido de Carbono/análise , Ecossistema , Fazendas , Gases de Efeito Estufa/análise , Gado , Metano/análise , Óxido Nitroso/análise , Oxigênio , Qualidade da Água
4.
New Phytol ; 235(5): 2129-2137, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35635530
5.
Sci Total Environ ; 829: 154360, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35283121

RESUMO

Worldwide food production is under ever-increasing demand. Meanwhile, climate change is disrupting rainfall and evaporation patterns, making agriculture freshwater supplies more uncertain. IPCC models predict an increased variability in rainfall and temperature over most of the globe under climate change. Yet, the effects of climate variability on water security remain poorly resolved. Here we used satellite images and deep-learning convolutional neural networks to analyse the impacts of annual averages, seasonality, climate anomaly, and temporal autocorrelation (or climate reddening) for rain and temperature on the water levels of >100,000 Australian farm dams across 55 years. We found that the risk of empty farm dams increased with warmer annual temperatures, lower yearly rainfall, stronger seasonality, reduced climate anomalies, and higher temporal autocorrelation. We used this information to develop a predictive model and estimate the likelihood of water limitations in farm dams between 1965 and 2050 using historical data and Coupled Model Intercomparison Project Phase 5 (CMIP5) at two climate change scenarios. Results showed that the frequency of empty water reserves has increased 2.5-fold since 1965 and will continue to increase across most (91%) of Australia. We estimated a 37% decline in rural areas with year-round water supplies between 1965 (457,076 km2) and 2050 (285,998 km2). Our continental-scale assessment documents complex temporal and spatial impacts of climate change on agricultural water security, with ramifications for society, economy, and the environment.


Assuntos
Agricultura , Mudança Climática , Agricultura/métodos , Austrália , Fazendas , Chuva
6.
Evol Lett ; 5(4): 306-314, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34367657

RESUMO

Larger cells have larger nuclei, but the precise relationship between cell size and nucleus size remains unclear, and the evolutionary forces that shape this relationship are debated. We compiled data for almost 900 species - from yeast to mammals - at three scales of biological organisation: among-species, within-species, and among-lineages of a species that was artificially selected for cell size. At all scales, we showed that the ratio of nucleus size to cell size (the 'N: C' ratio) decreased systematically in larger cells. Size evolution appears more constrained in nuclei than cells: cell size spans across six orders of magnitude, whereas nucleus size varies by only three. The next important challenge is to determine the drivers of this apparently ubiquitous relationship in N:C ratios across such a diverse array of organisms.

7.
Mar Pollut Bull ; 165: 112024, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33549995

RESUMO

Coastal ecosystems are under increasing pressure from land-derived eutrophication in most developed coastlines worldwide. Here, we tested for 277 days the effects of a nutrient pulse on blue carbon retention and cycling within an Australian temperate coastal system. After 56 days of exposure, saltmarsh and mangrove plots subject to a high-nutrient treatment (~20 g N m-2 yr-1 and ~2 g P m-2 yr-1) had ~23% lower superficial soil carbon stocks. Mangrove plots also experienced a ~33% reduction in the microbe Amplicon Sequence Variant richness and a shift in community structure linked to elevated ammonium concentrations. Live plant cover, tea litter decomposition, and soil carbon fluxes (CO2 and CH4) were not significantly affected by the pulse. Before the end of the experiment, soil carbon- and nitrogen-cycling had returned to control levels, highlighting the significant but short-lived impact that a nutrient pulse can have on the carbon sink capacity of coastal wetlands.


Assuntos
Carbono , Ecossistema , Austrália , Carbono/análise , Nutrientes , Solo , Áreas Alagadas
8.
New Phytol ; 229(5): 2647-2659, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33156533

RESUMO

Cell size influences the rate at which phytoplankton assimilate dissolved inorganic carbon (DIC), but it is unclear whether volume-specific carbon uptake should be greater in smaller or larger cells. On the one hand, Fick's Law predicts smaller cells to have a superior diffusive CO2 supply. On the other, larger cells may have greater scope to invest metabolic energy to upregulate active transport per unit area through CO2 -concentrating mechanisms (CCMs). Previous studies have focused on among-species comparisons, which complicates disentangling the role of cell size from other covarying traits. In this study, we investigated the DIC assimilation of the green alga Dunaliella tertiolecta after using artificial selection to evolve a 9.3-fold difference in cell volume. We compared CO2 affinity, external carbonic anhydrase (CAext ), isotopic signatures (δ13 C) and growth among size-selected lineages. Evolving cells to larger sizes led to an upregulation of CCMs that improved the DIC uptake of this species, with higher CO2 affinity, higher CAext and higher δ13 C. Larger cells also achieved faster growth and higher maximum biovolume densities. We showed that evolutionary shifts in cell size can alter the efficiency of DIC uptake systems to influence the fitness of a phytoplankton species.


Assuntos
Anidrases Carbônicas , Fitoplâncton , Carbono , Dióxido de Carbono , Anidrases Carbônicas/metabolismo , Tamanho Celular , Fotossíntese , Fitoplâncton/metabolismo
9.
Proc Biol Sci ; 287(1933): 20200995, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32811317

RESUMO

Size and metabolism are highly correlated, so that community energy flux might be predicted from size distributions alone. However, the accuracy of predictions based on interspecific energy-size relationships relative to approaches not based on size distributions is unknown. We compare six approaches to predict energy flux in phytoplankton communities across succession: assuming a constant energy use among species (per cell or unit biomass), using energy-size interspecific scaling relationships and species-specific rates (both with or without accounting for density effects). Except for the per cell approach, all others explained some variation in energy flux but their accuracy varied considerably. Surprisingly, the best approach overall was based on mean biomass-specific rates, followed by the most complex (species-specific rates with density). We show that biomass-specific rates alone predict community energy flux because the allometric scaling of energy use with size measured for species in isolation does not reflect the isometric scaling of these species in communities. We also find energy equivalence throughout succession, even when communities are not at carrying capacity. Finally, we discuss that species assembly can alter energy-size relationships, and that metabolic suppression in response to density might drive the allometry of community energy flux as biomass accumulates.


Assuntos
Ecossistema , Fitoplâncton , Biomassa , Tamanho Corporal , Metabolismo Energético , Modelos Biológicos , Densidade Demográfica
10.
Curr Biol ; 30(17): 3450-3456.e3, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32679103

RESUMO

Genome size is tightly coupled to morphology, ecology, and evolution among species [1-5], with one of the best-known patterns being the relationship between cell size and genome size [6, 7]. Classic theories, such as the "selfish DNA hypothesis," posit that accumulating redundant DNA has fitness costs but that larger cells can tolerate larger genomes, leading to a positive relationship between cell size and genome size [8, 9]. Yet the evidence for fitness costs associated with relatively larger genomes remains circumstantial. Here, we estimated the relationships between genome size, cell size, energy fluxes, and fitness across 72 independent lineages in a eukaryotic phytoplankton. Lineages with relatively smaller genomes had higher fitness, in terms of both maximum growth rate and total biovolume reached at carrying capacity, but paradoxically, they also had lower energy fluxes than lineages with relative larger genomes. We then explored the evolutionary trajectories of absolute genome size over 100 generations and across a 10-fold change in cell size. Despite consistent directional selection across all lineages, genome size decreased by 11% in lineages with absolutely larger genomes but showed little evolution in lineages with absolutely smaller genomes, implying a lower absolute limit in genome size. Our results suggest that the positive relationship between cell size and genome size in nature may be the product of conflicting evolutionary pressures, on the one hand, to minimize redundant DNA and maximize performance-as theory predicts-but also to maintain a minimum level of essential function. VIDEO ABSTRACT.


Assuntos
Tamanho Celular , Clorofíceas/genética , Evolução Molecular , Aptidão Genética , Tamanho do Genoma , Fenótipo , Ecologia
11.
Evolution ; 74(1): 169-178, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31815291

RESUMO

Body size often declines with increasing temperature. Although there is ample evidence for this effect to be adaptive, it remains unclear whether size shrinking at warmer temperatures is driven by specific properties of being smaller (e.g., surface to volume ratio) or by traits that are correlated with size (e.g., metabolism, growth). We used 290 generations (22 months) of artificial selection on a unicellular phytoplankton species to evolve a 13-fold difference in volume between small-selected and large-selected cells and tested their performance at 22°C (usual temperature), 18°C (-4), and 26°C (+4). Warmer temperatures increased fitness in small-selected individuals and reduced fitness in large-selected ones, indicating changes in size alone are sufficient to mediate temperature-dependent performance. Our results are incompatible with the often-cited geometric argument of warmer temperature intensifying resource limitation. Instead, we find evidence that is consistent with larger cells being more vulnerable to reactive oxygen species. By engineering cells of different sizes, our results suggest that smaller-celled species are pre-adapted for higher temperatures. We discuss the potential repercussions for global carbon cycles and the biological pump under climate warming.


Assuntos
Tamanho Corporal , Clorofíceas/fisiologia , Mudança Climática , Aptidão Genética , Temperatura Alta , Fitoplâncton/fisiologia , Seleção Genética , Adaptação Biológica , Ciclo do Carbono , Clorofíceas/genética , Fitoplâncton/genética
12.
Ecol Lett ; 22(9): 1407-1416, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31206970

RESUMO

Body size often strongly covaries with demography across species. Metabolism has long been invoked as the driver of these patterns, but tests of causal links between size, metabolism and demography within a species are exceedingly rare. We used 400 generations of artificial selection to evolve a 2427% size difference in the microalga Dunaliella tertiolecta. We repeatedly measured size, energy fluxes and demography across the evolved lineages. Then, we used standard metabolic theory to generate predictions of how size and demography should covary based on the scaling of energy fluxes that we measured. The size dependency of energy remained relatively consistent in time, but metabolic theory failed to predict demographic rates, which varied unpredictably in strength and even sign across generations. Classic theory holds that size affects demography via metabolism - our results suggest that both metabolism and size act separately to drive demography and that among-species patterns may not predict within-species processes.


Assuntos
Tamanho Celular , Clorofíceas/metabolismo , Metabolismo Energético , Modelos Biológicos , Biomassa , Clorofíceas/citologia , Densidade Demográfica
13.
Proc Biol Sci ; 285(1884)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068687

RESUMO

Size determines the rate at which organisms acquire and use resources but it is unclear what size should be favoured under unpredictable resource regimes. Some theories claim smaller organisms can grow faster following a resource pulse, whereas others argue larger species can accumulate more resources and maintain growth for longer periods between resource pulses. Testing these theories has relied on interspecific comparisons, which tend to confound body size with other life-history traits. As a more direct approach, we used 280 generations of artificial selection to evolve a 10-fold difference in mean body size between small- and large-selected phytoplankton lineages of Dunaliella tertiolecta, while controlling for biotic and abiotic variables. We then quantified how body size affected the ability of this species to grow at nutrient-replete conditions and following periods of nitrogen or phosphorous deprivation. Overall, smaller cells showed slower growth, lower storage capacity and poorer recovery from phosphorous depletion, as predicted by the 'fasting endurance hypothesis'. However, recovery from nitrogen limitation was independent of size-a finding unanticipated by current theories. Phytoplankton species are responsible for much of the global carbon fixation and projected trends of cell size decline could reduce primary productivity by lowering the ability of a cell to store resources.


Assuntos
Tamanho Celular , Clorofíceas/crescimento & desenvolvimento , Clorofíceas/fisiologia , Clorofíceas/citologia , Nitrogênio/metabolismo , Fósforo/metabolismo , Seleção Genética
14.
New Phytol ; 219(1): 449-461, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29658153

RESUMO

Cell size correlates with most traits among phytoplankton species. Theory predicts that larger cells should show poorer photosynthetic performance, perhaps due to reduced intracellular self-shading (i.e. package effect). Yet current theory relies heavily on interspecific correlational approaches and causal relationships between size and photosynthetic machinery have remained untested. As a more direct test, we applied 250 generations of artificial selection (c. 20 months) to evolve the green microalga Dunaliella teriolecta (Chlorophyta) toward different mean cell sizes, while monitoring all major photosynthetic parameters. Evolving larger sizes (> 1500% difference in volume) resulted in reduced oxygen production per chlorophyll molecule - as predicted by the package effect. However, large-evolved cells showed substantially higher rates of oxygen production - a finding unanticipated by current theory. In addition, volume-specific photosynthetic pigments increased with size (Chla+b), while photo-protectant pigments decreased (ß-carotene). Finally, larger cells displayed higher growth performances and Fv /Fm , steeper slopes of rapid light curves (α) and smaller light-harvesting antennae (σPSII ) with higher connectivity (ρ). Overall, evolving a common ancestor into different sizes showed that the photosynthetic characteristics of a species coevolves with cell volume. Moreover, our experiment revealed a trade-off between chlorophyll-specific (decreasing with size) and volume-specific (increasing with size) oxygen production in a cell.


Assuntos
Clorofíceas/citologia , Clorofíceas/fisiologia , Fotossíntese , Melhoramento Vegetal/métodos , Carbono/metabolismo , Tamanho Celular , Clorofila/metabolismo , Luz , Microalgas/citologia , Microalgas/fisiologia , Pigmentos Biológicos/metabolismo , Células Vegetais
15.
J Mol Evol ; 86(2): 111-117, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29349600

RESUMO

A major goal of evolutionary biology is to understand how beneficial mutations translate into increased fitness. Here, we study beneficial mutations that arise in experimental populations of yeast evolved in glucose-rich media. We find that fitness increases are caused by enhanced maximum growth rate (R) that come at the cost of reduced yield (K). We show that for some of these mutants, high R coincides with higher rates of ethanol secretion, suggesting that higher growth rates are due to an increased preference to utilize glucose through the fermentation pathway, instead of respiration. We examine the performance of mutants across gradients of glucose and nitrogen concentrations and show that the preference for fermentation over respiration is influenced by the availability of glucose and nitrogen. Overall, our data show that selection for high growth rates can lead to an enhanced Crabtree phenotype by the way of beneficial mutations that permit aerobic fermentation at a greater range of glucose concentrations.


Assuntos
Aptidão Genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Evolução Biológica , Etanol/metabolismo , Evolução Molecular , Fermentação/genética , Glucose/metabolismo , Mutação , Fenótipo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Ecol Lett ; 21(1): 54-62, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29143436

RESUMO

Size imposes physiological and ecological constraints upon all organisms. Theory abounds on how energy flux covaries with body size, yet causal links are often elusive. As a more direct way to assess the role of size, we used artificial selection to evolve the phytoplankton species Dunaliella tertiolecta towards smaller and larger body sizes. Within 100 generations (c. 1 year), we generated a fourfold difference in cell volume among selected lineages. Large-selected populations produced four times the energy than small-selected populations of equivalent total biovolume, but at the cost of much higher volume-specific respiration. These differences in energy utilisation between large (more productive) and small (more energy-efficient) individuals were used to successfully predict ecological performance (r and K) across novel resource regimes. We show that body size determines the performance of a species by mediating its net energy flux, with worrying implications for current trends in size reduction and for global carbon cycles.


Assuntos
Evolução Biológica , Tamanho Corporal , Tamanho Celular , Ecologia , Fitoplâncton
17.
Ecology ; 98(12): 3106-3115, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28940445

RESUMO

Many studies examine how body size mediates energy use, but few investigate how size simultaneously regulates energy acquisition. Furthermore, rarely energy fluxes are examined while accounting for the role of biotic and abiotic factors in which they are nested. These limitations contribute to an incomplete understanding of how size affects the transfer of energy through individuals, populations, and communities. Here we characterized photosynthesis-irradiance (P-I) curves and per-cell net-energy use for 21 phytoplankton species spanning across four orders of magnitude of size and seven phyla, each measured across six light intensities and four population densities. We then used phylogenetic mixed models to quantify how body size influences the energy turnover rates of a species, and how this changes across environments. Rate-parameters for the P-I curve and net-energy budgets were mostly highly correlated and consistent with an allometric size-scaling exponent of <1. The energy flux of a cell decreased with population density and increased with light intensity, but the effect of body size remained constant across all combinations of treatment levels (i.e. no size×populationdensity interaction). The negative effect of population density on photosynthesis and respiration is mostly consistent with an active downregulation of metabolic rates following a decrease in per-cell resource availability, possibly as an adaptive strategy to reduce the minimum requirements of a cell and improve its competitive ability. Also, because an increase in body size corresponds to a less-than-proportional increase in net-energy (i.e. exponent<1), we propose that volume-specific net-energy flux can represent an important cost of evolving larger body sizes in autotrophic single-cell organisms.


Assuntos
Ecossistema , Fitoplâncton , Biomassa , Luz , Fotossíntese , Filogenia
18.
J Theor Biol ; 404: 1-9, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27216639

RESUMO

Ecologists have often used indirect proxies to represent variables that are difficult or impossible to measure directly. In phytoplankton, the internal concentration of the most limiting nutrient in a cell determines its growth rate. However, directly measuring the concentration of nutrients within cells is inaccurate, expensive, destructive, and time-consuming, substantially impairing our ability to model growth rates in nutrient-limited phytoplankton populations. The red chlorophyll autofluorescence (hereafter "red fluorescence") signal emitted by a cell is highly correlated with nitrogen quota in nitrogen-limited phytoplankton species. The aim of this study was to evaluate the reliability of including flow cytometric red fluorescence as a proxy for internal nitrogen status to model phytoplankton growth rates. To this end, we used the classic Quota model and designed three approaches to calibrate its model parameters to data: where empirical observations on cell internal nitrogen quota were used to fit the model ("Nitrogen-Quota approach"), where quota dynamics were inferred only from changes in medium nutrient depletion and population density ("Virtual-Quota approach"), or where red fluorescence emission of a cell was used as an indirect proxy for its internal nitrogen quota ("Fluorescence-Quota approach"). Two separate analyses were carried out. In the first analysis, stochastic model simulations were parameterized from published empirical relationships and used to generate dynamics of phytoplankton communities reared under nitrogen-limited conditions. Quota models were fitted to the dynamics of each simulated species with the three different approaches and the performance of each model was compared. In the second analysis, we fit Quota models to laboratory time-series and we calculate the ability of each calibration approach to describe the observed trajectories of internal nitrogen quota in the culture. Results from both analyses concluded that the Fluorescence-Quota approach including per-cell red fluorescence as a proxy of internal nitrogen substantially improved the ability of Quota models to describe phytoplankton dynamics, while still accounting for the biologically important process of cell nitrogen storage. More broadly, many population models in ecology implicitly recognize the importance of accounting for storage mechanisms to describe the dynamics of individual organisms. Hence, the approach documented here with phytoplankton dynamics may also be useful for evaluating the potential of indirect proxies in other ecological systems.


Assuntos
Modelos Biológicos , Nitrogênio/metabolismo , Fitoplâncton/metabolismo , Simulação por Computador , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...